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INVITED SPECIAL PAPER

A GENERIC GEOMETRIC TRANSFORMATION THAT

UNIFIES A WIDE RANGE OF NATURAL AND

ABSTRACT SHAPES1
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To study forms in plants and other living organisms, several mathematical tools are available, most of which are general tools that
do not take into account valuable biological information. In this report I present a new geometrical approach for modeling and
understanding various abstract, natural, and man-made shapes. Starting from the concept of the circle, I show that a large variety of
shapes can be described by a single and simple geometrical equation, the Superformula. Modification of the parameters permits the
generation of various natural polygons. For example, applying the equation to logarithmic or trigonometric functions modifies the
metrics of these functions and all associated graphs. As a unifying framework, all these shapes are proven to be circles in their internal
metrics, and the Superformula provides the precise mathematical relation between Euclidean measurements and the internal non-
Euclidean metrics of shapes. Looking beyond Euclidean circles and Pythagorean measures reveals a novel and powerful way to study
natural forms and phenomena.
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Form in plants and other organisms has intrigued students
of nature for a long time. The molecular processes underlying
morphogenesis are being unraveled with increasing success.
But the elucidation of biophysical processes and mathematical
rules underlying morphogenesis and morphology is also a pri-
ority since these largely undeveloped processes and rules will
provide the necessary links between gene action and form
(Green, 1999).

Spherical, circular, and cylindrical forms and shapes are
commonly observed in nature (D’Arcy Thompson, 1917;
Wainwright, 1988). More complex forms in biology can also
be analyzed in terms of circles and harmonics through elliptic
Fourier analysis (Kuhl and Giardina, 1982; Kincaid and
Schneider, 1983). This method has also been applied to plant
leaves (McLellan, 1993). Other more recent approaches to de-
scribe natural forms and patterns include algorithms that can
generate virtual plants (Prusinkiewicz and Lindenmayer, 1989;
Prusinkiewicz, 1998). Dynamical modeling, such as patterning
in shells (Meinhardt, 1998) or whorl morphogenesis in dasy-
cladalean algae (Dumais and Harrison, 2000), also has been
shown to be algorithmic.

With the advancement of computer technology, models are
becoming increasingly sophisticated for imaging living organ-
isms or their parts. Visualization methods for biological or-
ganisms or organs can be implemented using a range of dif-
ferent algorithms and methods. Geometric morphometrics has
become a rapidly expanding field of research in biology (Jen-
sen, 1990; Bookstein, 1996; Rohlf, 1996), but in plant leaves
variability can be very large even within one species or genus.
It should also be noted, however, that while algorithms can
yield perfect virtual plants, it is impossible to find an algorithm
that exactly describes a real plant (Van Oystaeyen et al., 1996).

In this paper I present a geometrical approach that permits
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description of many abstract, naturally occurring and man-
made geometrical shapes and forms with one surprisingly sim-
ple generic formula. I will show that many geometrical forms,
both in nature and culture, can be interpreted as modified cir-
cles. In a most general way, I will refer to these shapes as
Supershapes. They are not only useful for modeling, but also
allow insight into why certain forms grow as they do.

MATERIALS AND METHODS

The circle and square, ellipse and rectangle are all members of the set of
superellipses (Loria, 1910; Gridgeman, 1970) defined by:

n nzx/az 1 zy/bz 5 1 (1)

The main disadvantage of superellipses is their limited symmetry. The use of
polar coordinates r 5 f(f) by substituting of x 5 r.cos f and y 5 r.sin f,
and the introduction of the argument m/4 of the angle f introduces specific
rotational symmetries. The exponent n can also differ. This leads to Eq. 2,
for ni and m ∈ R1 (positive real numbers) and for a, b ∈ R1

0 (positive real
numbers but not zero).

1
:r(f) 5 (2)
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For n1 5 n2 5 n3 5 2 and m 5 4 in Eq. 2, an ellipse is obtained. A circle
is obtained when additionally a 5 b, which can also be described by Eq. 1.
But instead of dividing the plane in four sectors or quadrants only, as in Eq.
1, which is the major drawback of superellipses, the plane can now be divided
into a number of sectors equal to m using Eq. 2. As with supercircles (Eq.
1), the absolute values cause a repetition of the graph of the first sector (0 2
2p/m) in subsequent sectors. Asymmetrical shapes can be generated by se-
lecting different parameter values in different sectors (for example n 5 2 in
first and second quadrant, n 5 2.54 in the third, and n 5 1.989 in the fourth
using Eq. 1).

Eq. 2 modifies the metrics of functions and all associated graphs. The sit-
uation just described above can be considered as a modification of a constant
function R 5 1 (deformation of the unit circle), but other functions f(f) can
be used as well. When combined with other functions, the Superformula will
modify the metrics of these functions and all associated graphs (Eq. 3).
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Fig. 1. Natural supershapes generated by Eq. 2. The numbers between brackets refer to (m; n1; n2 5 n3). The value of a 5 b is 1 except for Fig. 1e where
a 5 b 5 10. (a) Nuphar luteum petiole (3; 4.5; 10); (b) Scrophularia nodosa stem (4; 12; 15); (c) Equisetum stem (7; 10; 6); (d) Raspberry (5; 4; 4); (e)
Starfish 1 (5; 2; 7); (f) Starfish 2 (5; 2; 13). (g–h) spirals (r 5 e0.2w) modified by Eq. 2. Values of m and n are (g) m 5 4; ni 5 100; (h) m 5 10; ni 5 5. (i)
Spiral of Archimedes (r 5 w) modified by Eq. 2 with (m 5 6, n1 5 250; n2 5 n3 5 100). (j–k) Modified Rose curves zcos (m.w)z with m 5 2.5 inscribed in
polygons with values of m; n1; n2 5 n3, (j) 2.5; 1/1.3; 2.7, (k) 2.5; 5; 5. (l) Super- and subcosines: cosine functions (cos w) inscribed in polygons with values
of (m; n1; n2 5 n3) 5 (4; 1; 1), supercosines, solid line and (4; 25; 25), subcosines, dashed line.

1
r 5 f(f) (3)
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This generic equation generates a large class of super- and subshapes (Fig.
1), including the super- and subcircles as special cases. I therefore propose
the name Superformula for Eq. 3 based on the notion of supercircles, super-
ellipses, and superquadrics.

Eqs. 2 and 3 can also be generalized in more than two dimensions extending
to three- or higher dimensional spaces. Alternatively, two-dimensional shapes
can also be described in a multidimensional parameter space R6 with the
various parameters (a, b, n1, n2, n3, m).

Eq. 2 is a conversion formula between the internal metrics of shapes and
our classical Euclidean plane (or space). Given a shape, the parameters of the
formula can be obtained by performing a limited number of measurements.
For symmetrical shapes (a 5 b and n1 5 n2 5 n3 as in Table 1, columns 2
and 4), two measurements are sufficient, one at 08 or 2p/m (distance R from
origin or centroid to shape) and one at p/m (distance S from origin or centroid
to shape) using Eq. 4, which is obtained by solving Eq. 2 for n (with a 5 b
and n1 5 n2 5 n3 for specific angles). Angles other than k.2p/m or k.p/m
can be used, but R and S generally are minimum and maximum distances.

1
:5 n (4)

R 1 1
ln 11 2S ln(2) 2

If the values of the parameters differ (Table 1, columns 3, 5, and 6), extra
measurements will generate more equations that need to be solved. The pa-
rameters can then be found using methods such as maximum likelihood es-
timates and nonlinear optimization algorithms, which are beyond the scope
of this paper.

RESULTS

Integer and non-integer rotational symmetries—The vari-
able m (Eq. 2) can define zerogons (m 5 0), monogons (m 5
1), and diagons (m 5 2), as well as triangles, squares, and
polygons with higher rotational symmetries. The argument m
allows the orthogonal axes to fold in or out like a fan and
determines the number of points fixed on the unit circle (or
ellipse for a ± b) and their spacing. These points will always
remain fixed.

The values of n2 and n3 determine whether the shape is
inscribed or circumscribed in the unit circle. For n2 5 n3 , 2
the shape is inscribed (subpolygons), while for n2 5 n3 . 2
the shape will circumscribe the circle (superpolygons). A cir-
cle is defined either as a zerogon or zero-angle for any value
of ni, given m 5 0, or for any rotational symmetry m given
that n2,3 5 2. The value of n1 will further determine the shape.
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TABLE 1. Examples of various abstract shapes. Modification of parameters of Eq. 2 for positive integer rotational symmetries m from 0 to 8 for
R 5 1.

Corners can be sharpened or flattened and the sides can be
straight or bent (convex or concave) as shown in Table 1.

Subpolygons are inscribed in the circle (Table 1, columns 2
and 4) and rotated by p/m relative to superpolygons, circum-
scribing the circle (Table 1, columns 3 and 5). Interestingly,
when subpolygons transform into superpolygons (and vice
versa), corners transform into sides, and sides into corners,
because of the fixed points on the unit circle. Equal shapes are
generated that close after one rotation (0 2 2p) by selecting
zero or a positive integer for m. Exactly the same shape is
generated for every subsequent rotation by 2p.

This changes when further changes of Eq. 2 are applied,
such as when the ratio n2/n3 varies (Table 1, column 6) or when
the values of a and b differ (Table 1, column 7). Also, when
m is positive but not an integer, the shape generated does not
close after one rotation. If m is a rational number, the shape
will close after a number of rotations equal to the denominator
of m. The numerator of m determines the number of angles
e.g., for m 5 5/2 the shape will close with five angles after
only two rotations and will then have 5/2 or 2,5 angles in one
rotation (Fig. 2). This shape will then be repeated every 4p.

There will be no repeating pattern using irrational numbers.
The notion of dihedral symmetry as defined for regular poly-
gons (Weyl, 1952; denoted by Dn and defined for an integer
in Eqs. 2 and 3) can thus be extended to include cyclic Cn and

dihedral Dn symmetries for any real number in the plane with
m rational or irrational.

Because all these shapes are described by the same equation,
numerical calculations such as area and polar moment of in-
ertia Ip for this large class of forms can be done by integration
of one single equation. This permits calculations for optimi-
zation of area or moment of inertia. For example, when a circle
develops into a supercircle a moderate increase of area rapidly
leads to a large increase of Ip.

A very important consequence is that the area is constant
for a given shape, defined by the exponents n, irrespective of
the value of m. The areas of shapes shown in Table 1, columns
2, 4, and 5, e.g., are constant for m . 0. Because a symmetry
is generally defined in geometry as a transformation that
leaves a certain quantity (here, area) invariant, the symmetry
here is the value of m (for m . 0).

Examples of natural shapes—A wide range and remark-
able variety of forms throughout the different kingdoms can
be modeled with the Superformula (Gielis, 1999, 2001). In
Fig. 1, examples are shown of natural supershapes or super-
polygons, such as triangular shapes in the petiole of Nuphar
luteum and in marine diatoms like Pseudotriceratium, Sheshu-
kovia, Triceratium, and Trigonium (Fig. 1a). Other diatoms
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Fig. 2. Polygons of non-integer symmetry; rose sepals and carambola
fruits (m 5 5/2). Top, n 5 0.5. Bottom, n 5 0.4.

like Stictodiscus are quadrangular or pentangular or can have
different symmetries (Round et al., 1991).

Supercircular stems (referred to as tetragonal or square, Fig.
1b) occur in a wide variety of plants such as Silphium perfol-
iatum (Asteraceae), Verbena bonariensis, in Lamiaceae, Ti-
bouchina (Melastomataceae), Scrophularia nodosa (Scrophu-
lariaceae), Galium species (Rubiaceae), Buddleja davidii (Bud-
dlejaceae), Chimonobambusa quadrangularis (Poaceae;
McGowan, 1889), and in young stems and branches of Tec-
tona grandis (Verbenaceae), as well as in succulents such as
Euphorbia sp. (Euphorbiaceae), Cissus quadrangula, and C.
cactiformis (Vitaceae) and species of Orbea, Stapelia, Frerea,
and Huernia (Asclepiadaceae).

Clematis montana (Ranunculaceae) and Impatiens glandu-
lifera (Balsaminaceae) stems have hexagonal symmetry. Veg-
etative stems of horsetails, Equisetum, can be heptagonal (Fig.
1c), while the thicker fertile stems can have symmetries of up
to 14. Stems of raspberries (Rubus sulcatus and R. phyllo-
stachys) and cacti like Stenocereus thurberi, S. gummosus, and

Lophocereus schotti (Molina-Freaner et al., 1998) are hexag-
onal or pentagonal (Fig. 1d).

Supercircular forms are also frequently observed at the an-
atomical level, such as in square or rectangular tracheids in
pinewood. In bamboo culms, longitudinal sections have long
and short parenchyma cells resembling piles of superelliptical
building blocks (Liese, 1998; Takenouchi, 1931).

Cells in genera of brown algae belonging to Dictyotaceae
(Dictyotales: Phaeophyta) like Zonaria, Exallosorus, Hom-
oeostrichus, and Lobophora can easily be characterized by the
rectangular shape of their cells. Other examples of polygonal
arrangements at the microscopic level are found in developing
flower primordia of actinomorphic flowers. Trimerous, pentag-
onal, and quadrangular flowers can be found in different gen-
era.

Examples of non-integer value rotational symmetries are
found in plant phyllotaxy (Fig. 2). Angles of 2,5 with m 5
5/2 have five angles in two rotations as is observed in sepals
of rose (Fig. 2) and cross sections of Averrhoa carambola (star
fruit; Fig. 2). The angles are spaced 1448 apart, and the shape
closes after two rotations only. Angles of 5/1 (pentagonal
shapes with m 5 5/1 both integer and rational) have five an-
gles in one rotation of 3608, spaced 728 apart. So while pen-
tagrams and natural 5/2 angles superficially share the same
rotational symmetry, D5 with pentagons (Weyl, 1952), their
generic symmetry is non-integer. It is interesting to note that
with Eq. 2 small deviations are possible, such as 5/2.1 angles,
resulting in five angles in slightly more than two rotations.
The number of rotational symmetry m defines the precise
spacing of the angles.

Starfish, shells, flowers, and generalized Fourier series—
Similar forms can be observed in animals. When the inward
folding of the sides of pentagons is more pronounced, shapes
of starfish are obtained (Fig. 1e and 1f). After the initial larval
stage with bilateral and left/right symmetry, starfish (Astero-
idea) develop into an adult stage with radial symmetry (Lowe
and Wray, 1997). Radial symmetry is a prominent feature of
various other echinoderms.

Logarithmic spirals occur widely in nature, for example, in
phyllotaxy of plants (Jean, 1994) and in shells of molluscs,
with Nautilus as the classical example (D’Arcy Thompson,
1917). Other excellent examples can readily be observed in
various other shells such as Architectonica perspectiva (Ar-
chitectonicidae) and snails such as the famous manus green
papuina (Papustyla pulcherrima).

But unlike Nautilus and various snails, many shells are not
simple logarithmic spirals as seen in the varices and combs of
shells of trapezium horse conch (Pleuroploca trapezium, Fig.
1h), Cymbiola imperialis, Strombus species, and murexes.
Here the logarithmic spiral is inscribed in a polygon, defined
by Eq. 2. Another example is a square logarithmic spiral (Fig.
1g) and the spiral of Archimedes inscribed in a hexagon (Fig.
1i). Inscribed in a triangle, the logarithmic spiral models tri-
angular coiling as observed in various ammonoids. Triangular
coiling has occurred at least three times during the evolution
of the ammonoids, in genera such as Soliclymenia, Kampto-
clymenia, Trigonoshumardites, and Trigonogastrioceras. Oth-
er genera have quadrangular or triangular coiling in early stag-
es of development (Becker, 2000).

Trigonometric functions also can be modified by Eqs. 2 and
3 as shown both in polar coordinate graphs (Fig. 1j–k) and in
the wave representation (Fig. 1l). The relation between shapes
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of flowers and trigonometric functions like sine and cosine was
first postulated by the monk Grandus in the 17th century
(D’Arcy Thompson, 1917). This relation is not surprising be-
cause in polar coordinates, cosine and sine functions define
circles with their center on the shape itself.

Inscribing flowers in superpolygons allows one to model
various flowers with radial symmetry and shows how petals
are efficiently packed in a limited area (Fig. 1j–k). Indeed,
when the area of the petals of Geranium is compared to the
area of the underlying superpolygons, the area used is over
90%. ‘‘Square’’ arrangements of leaves can be seen in sepals
of various species of Hydrangea and in leaflets of the water
fern, Marsilea quadrifolia (Marsilaceae).

Figure 1l also indicates how a generalized Fourier series can
be defined, in which any component of the Fourier series can
be moderated by Eq. 2. Thus, all shapes in Table 1, Figs. 1,
2, 3a–f, and 4 can be described in a single, constant general-
ized Fourier component moderated by Eq. 2. Likewise, the
super- and subcosines of Fig. 2k–l can be described in one
cosine Fourier component. As a direct consequence, each of
these shapes is described by a finite series, instead of being
an approximation by an infinite series of trigonometric terms
as in a classical Fourier series.

Increasing the degrees of freedom—In general, one could
think of the basic Superformula as a transformation to fold or
unfold a system of orthogonal coordinate axes like a fan. This
creates a basic symmetry and metrics in which distances can
further be deformed by local or global transformations. Such
additional transformations increase the plasticity of basic su-
pershapes. The degrees of freedom of supershapes defined by
Eq. 2 can be enhanced by various techniques such as param-
eterization of the equation or by using probabilities.

Combining Eq. 2 and Pattern Theory (Grenander, 1993)
captures variation in nature in a probabilistic way. In this pow-
erful combination, shapes defined by Eqs. 2 and 3 will serve
as deformable templates Id. These shapes can also be used in
a geometric morphometrics study to compare natural shapes
based on the outlines. Since such models preserve the sym-
metry that is readily observed by any student of nature, a
knowledge-based approach to pattern recognition of natural
shapes is realized.

Equation 2 offers great opportunities in computer applica-
tions to describe plants and natural shapes in three dimensions,
either as an extension of superquadrics or as generalized cyl-
inders. The use of superquadrics is based on the spherical
product of two two-dimensional supershapes (Barr, 1981). Su-
perquadrics have also found wide application in computer en-
vironments (Jacklic et al., 2000) to model hearts and human
bodies.

The major drawback of superquadrics and superellipses is
their limited symmetry. Extending the notion of superquadrics
by Eq. 2 greatly enhances the potential to describe natural
forms, especially since symmetries are taken into account. If
for example, 20 sections are taken from a succulent stem and
each section described by (R, m, n1, n2, n3), the whole stem is
characterized uniquely by a maximum of 100 numbers.

The use of superquadrics has further been extended by the
possibility of local and global deformations. This extension
allows modeling of natural and man-made shapes to any de-
gree of precision, but such deformations require larger sets of
parameters. Global deformations affect the whole superquadric

and includes deformations such as tapering, bending, or any
hierarchical combination thereof.

Local deformations can be implemented in different ways
(Jacklic et al., 2000). Increasing the degrees of freedom of the
superquadrics has been possible by parameterization, including
the use of Bezier curves as functions in the exponent of su-
perquadric equations (Zhou and Kambhamettu, 1999) and by
blending multiple models (DeCarlo and Metaxas, 1998). Other
ways to increase the degrees of freedom have included hyper-
quadrics (Hanson, 1988) and ratioquadrics (Blanc and Schlick,
1996). Implementing Bezier curves as exponent function in
Eq. 2 also allows the modeling of highly asymmetrical shapes.

DISCUSSION

Generalizing the equation of the ellipse (Eq. 1) into Eq. 2
allows us to understand the mathematical simplicity and beau-
ty of many natural forms differing only in parameter values.
Equations 2 and 3 allow for a great reduction of complexity
of shapes and provides new insights into symmetry, including
non-integer symmetries. Here only two-dimensional shapes are
treated, but Eqs. 2 and 3 can be extended in other dimensions
as well.

Given the extraordinary correspondence to natural shapes,
we can postulate that Eqs. 2 and 3 unveil a very basic ge-
ometry of nature, in which coordinate axes in any dimension
can fold or unfold like fans, while at the same time distances
are still based on the same spacing of numbers on coordinate
axes as in the classical orthogonal system, through XY-coor-
dinates and trigonometric functions.

Equation 1 not only deforms the unit circle into various sub-
and supercircles, but the reverse is also true: superellipses are
all circles (Hersh, 1998) with a metric defined by Eq. 1. More
generally all the shapes and graphs defined by the Superfor-
mula are circles with a metric defined by Eq. 2 (Gielis, 2001),
which provides the analytical link between internal metrics of
forms and our classical Euclidean distance measures.

The Superformula inherently allows for small modifications
of parameters (e.g., gradually changing the form of stem sec-
tions along a stem) and can become a powerful tool in the
study of nature. It allows for every individual shape to have
its own defined parameters, e.g., to discriminate individual di-
atoms or subsequent sections of stems of cacti.

For each of these shapes, area and other associated char-
acteristics can easily be calculated by integration. For a given
set of exponents in Eq. 1, the area remains invariant to changes
in the symmetry m. It is anticipated that in the future, physics-
based models (finite elements) can be implemented to study
the distribution of forces in plants and organs. The shapes can
also be understood as ‘‘atomic’’ shapes, for which more com-
plex forms can be built with certain combinations.

Considering that the mathematics behind the Superformula
are easily understood and given the wide range of applications,
both in technology (Gielis, 1999) and science, I believe that
the Superformula has the potential to transform the way we
look at symmetry and shape in a profound manner.

LITERATURE CITED

BARR, A. H. 1981. Superquadrics and angle preserving transformations. IEEE
Computer Graphics Applications 1: 11–23.

BECKER, T. R. 2000. Taxonomy, evolutionary history and distribution of the
middle to late Fammenian Wocklumeria (Ammonoida, Clymeniida). Mit-
teilungen Museum für Naturkunde Berlin, Geow. Reihe 3: 27–75.



338 [Vol. 90AMERICAN JOURNAL OF BOTANY

BLANC, C., AND C. SCHLICK. 1996. Ratioquadrics: an alternative method for
superquadrics. Visual Computer 12(8): 420–428.

BOOKSTEIN, F. L. 1996. Biometrics, biomathematics and the morphometric
synthesis. Bulletin of Mathematical Biology 58: 313–365.

D’ARCY THOMPSON, W. 1917. On growth and form. Cambridge University
Press, Cambridge, UK.

DECARLO, D., AND D. METAXAS. 1998. Shape evolution with structural and
topological changes using blending. IEEE Transactions on Pattern Rec-
ognition and Machine Intelligence, 20: 1186–1205.

DUMAIS, J., AND L. G. HARRISON. 2000. Whorl morphogenesis in the dasy-
cladalean algae: the pattern formation viewpoint. Philosophical Trans-
actions of the Royal Society of London B 355: 281–305.

GIELIS, J. 1999. Methods and devices for synthesizing and analyzing patterns
using a novel mathematical operator. USPTO patent application N8 60/
133,279.

GIELIS, J. 2001. De uitvinding van de Cirkel. Geniaal, Antwerp, Belgium.
GREEN, P. B. 1999. Expression of pattern in plants: combining molecular and

calculus-based biophysical paradigms. American Journal of Botany 86:
1059–1076.

GRENANDER, U. 1993. General pattern theory. Oxford University Press, Ox-
ford, UK.
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