
Differential Geometry and its Applications 28 (2010) 697–704
Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Quintic parametric polynomial minimal surfaces and
their properties

Gang Xu a,c,∗, Guo-zhao Wang b

a Hangzhou Dianzi University, Hangzhou 310018, PR China
b Department of Mathematics, Zhejiang University, Hangzhou 310027, PR China
c Galaad, INRIA Sophia-Antipolis, 2004 Route des Lucioles, 06902 Sophia-Antipolis Cedex, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 November 2009
Received in revised form 14 April 2010
Available online 31 July 2010
Communicated by Z. Shen

MSC:
53A10
49Q05
49Q10

Keywords:
Minimal surface
Harmonic surfaces
Isothermal parametric surface
Isometric minimal surfaces

In this paper, quintic parametric polynomial minimal surface and their properties are
discussed. We first propose the sufficient condition of quintic harmonic polynomial
parametric surface being a minimal surface. Then several new models of minimal surfaces
with shape parameters are derived from this condition. We also study the properties
of new minimal surfaces, such as symmetry, self-intersection on symmetric planes and
containing straight lines. Two one-parameter families of isometric minimal surfaces are
also constructed by specifying some proper shape parameters.
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1. Introduction

Since Lagrange derived the minimal surface equation in R3 in 1762, minimal surfaces have a long history of over 200
years. A minimal surface is a surface with vanishing mean curvature. As the mean curvature is the variation of area
functional, minimal surfaces include the surfaces minimizing the area with a fixed boundary. Because of their attractive
properties, minimal surfaces have been extensively employed in many areas such as architecture, material science, aviation,
ship manufacture, biology and so on. For instance, the shape of the membrane structure, which has appeared frequently in
modern architecture, is mainly based on minimal surfaces [1]. Furthermore, triply periodic minimal surfaces naturally arise
in a variety of systems, including nanocomposites, lipid–water systems and certain cell membranes [11].

However, most of the classic minimal surfaces, such as helicoid and catenoid, cannot be represented by Bézier surface
or B-spline surface [13]. Because parametric polynomial surface is one of the fundamental elements in CAD systems [5], it
is important to find some minimal surfaces with parametric polynomial form. As we know, plane is the unique quadratic
minimal surface, Enneper surface is the unique cubic minimal surface [14], and there are few research work on the para-
metric form of polynomial minimal surface with higher degree. In this paper, we will study the parametric form of quintic
parametric polynomial minimal surfaces and their properties.
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1.1. Related work

There have been many literatures on minimal surface in classical differential geometry [15]. The Weierstrass representa-
tion is a unified form of minimal surface [14]. However, it is difficult for CAD users to choose proper initial functions for the
parametric polynomial minimal surfaces. The discrete minimal surface has been introduced in recent years [2,3,16,19,21].
As the topics which are related with the minimal surface, the computational algorithms for conformal structure on dis-
crete surface are presented in [7–10,12]. There is a close relation between conformal structure and isothermal coordinates.
Isothermal coordinates on a Riemannian manifold are local coordinates where the Riemannian metric is locally conformal
equivalent to the Euclidean flat metric [7,8]. Some discrete approximation of smooth differential operators are proposed in
[23,24]. The Plateau Bézier/B-spline problems are studied in [22] by using Geometric PDE method. A kind of quartic poly-
nomial minimal surface is presented in [13], but their properties haven’t been discussed. Applications of minimal surface in
aesthetic design, 3D ball skinning, aviation and nanostructures modeling have been presented in [6,17,18,20].

1.2. Contributions and overview

Our main contributions are:

• For quintic case, we propose sufficient conditions of harmonic polynomial parametric surface being minimal surface.
The coefficient relations are derived from the isothermal condition.

• Based on this condition, several families of new minimal surfaces with shape parameters are presented. We analyze
the geometric properties of the new minimal surfaces, such as symmetry, self-intersection on symmetric planes and
containing straight lines.

• From these minimal surfaces, we can construct one-parameter family of isometric minimal surfaces by specifying proper
shape parameters.

The remainder of this paper is organized as follows. Some preliminaries and notations are presented in Section 2. Section 3
presents the sufficient conditions for quintic harmonic polynomial surface being minimal surface. Section 4 derives a new
family of minimal surface from the condition, and studies its properties. Finally, we conclude and list some future work in
Section 5.

2. Preliminary

In this section, we shall review some concepts and results related to minimal surfaces [4,14].
If the parametric form of a regular patch in R3 is given by

r(u, v) = (
x(u, v), y(u, v), z(u, v)

)
, u ∈ (−∞,+∞), v ∈ (−∞,+∞).

Then the coefficients of first fundamental form of r(u, v) are

E = 〈ru, ru〉, F = 〈ru, rv〉, G = 〈rv , rv〉,
where ru , rv are the first-order partial derivatives of r(u, v) with respect to u and v respectively and 〈,〉 defines the dot
product of the vectors. The coefficients of second fundamental form of r(u, v) are

L = (ru, rv , ruu), M = (ru, rv , ruv), N = (ru, rv , rv v),

where ruu , rv v and ruv are the second-order partial derivatives of r(u, v) and (,,) defines the mixed product of the vectors.
Then the mean curvature H and the Gaussian curvature K of r(u, v) are

H = E N − 2F M + LG

2(EG − F 2)
, K = LN − M2

EG − F 2
.

Definition 1. If r(u, v) satisfies E = G, F = 0, then r(u, v) is called surface with isothermal parameterizations.

Definition 2. If r(u, v) satisfies ruu + rv v = 0, then r(u, v) is called harmonic surface.

Definition 3. If r(u, v) satisfies H = 0, then r(u, v) is called minimal surface.

Lemma 1. The surface with isothermal parameter is minimal surface if and only if it is harmonic surface.
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Definition 4. If two differentiable functions p(u, v),q(u, v) : U �→ R satisfy the Cauchy–Riemann equations

∂ p

∂u
= ∂q

∂v
,

∂ p

∂v
= − ∂q

∂u
,

and both are harmonic, then the functions are said to be harmonic conjugate.

Definition 5. If P = (p1, p2, p3) and Q = (q1,q2,q3) are with isothermal parameterizations such that pk and qk are har-
monic conjugate for k = 1,2,3, then P and Q are said to be parametric conjugate minimal surfaces.

For example, helicoid and catenoid are a pair of conjugate minimal surface. A pair of conjugate minimal surfaces satisfy
the following lemma.

Lemma 2. Given two conjugate minimal surfaces P and Q and a real number t, all surfaces of the one-parameter family

P t = (cos t)P + (sin t) Q

satisfy

(a) P t are minimal surfaces for all t ∈ R;
(b) P t have the same first fundamental forms for t ∈ R .

From Lemma 2, any pair of conjugate minimal surfaces can be joined through a one-parameter family of minimal sur-
faces, and the first fundamental form of this family is independent of t . In other words, these minimal surfaces are isometric
and have the same Gaussian curvatures at corresponding points.

3. Sufficient condition for quintic parametric polynomial minimal surface

In this section, we will present a sufficient condition for quintic parametric polynomial minimal surface. The sufficient
condition is derived from Lemma 1. Hence, quintic harmonic parametric polynomial surfaces should be studied firstly. In
fact, we have the following lemma.

Lemma 3. Quintic harmonic polynomial surface r(u, v) must have the following form

r(u, v) = a
(
u5 − 10u3 v2 + 5uv4) + b

(
v5 − 10u2 v3 + 5u4 v

) + c
(
u4 − 6u2 v2 + v4)

+ duv
(
u2 − v2) + eu

(
u2 − 3v2) + f v

(
v2 − 3u2) + g

(
u2 − v2) + huv + iu + jv + k,

where a, b, c,d, e, f , g,h, i, j,k are coefficient vectors.

Proof. Let r(u, v) = ∑5
0�k+l�5 wkluk vl . For simplicity, we only consider the terms with k + l = 5. From the harmonic con-

dition, we have

w32 = −10w50, w14 = 5w50, 10w23 = −10w05, w41 = 5w05.

Hence, if w50 = a, w05 = b, then

w32 = −10a, w14 = 5a, w23 = −10b, w41 = 5b.

Analogously, the relations of coefficients of other terms with 0 � k + l < 5 can be obtained. The proof is completed. �
From Lemmas 1 and 3, the sufficient condition can be easily obtained.

Theorem 1. If the coefficient vectors of quintic harmonic polynomial surface r(u, v) in Lemma 3 satisfy the following system of
equations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 = b2,

a · b = 0,

4a · c − b · d = 0,

a · d + 4b · c = 0,

16c2 − d2 + 30a · e + 30b · f = 0,

4d · c + 15b · e − 15a · f = 0,

9e2 − 9 f 2 + 16c · g − 2d · h + 10a · i − 10b · j = 0,

9e · f − 4c · h − 2d · g − 5b · i − 5a · j = 0,

4g2 − h2 + 6e · i + 6 f · j = 0,

2g · h − 3 f · i + 3e · j = 0,

5a · h + 10b · g − 12c · f + 3d · e = 0,

5b · h − 10a · g − 3d · f − 12c · e = 0,

2e · g + f · h = 0,

2 f · g − e · h = 0,

h · i + 2g · j = 0,

2g · i − h · j = 0,

i2 = j2,

i · j = 0,

(1)

then r(u, v) is a minimal surface.

Proof. The partial derivatives of the harmonic surface r(u, v) in Lemma 3 have the following forms:

ru(u, v) = 5aAe
4 + 10b Ao

4 + 4c Ao
3 + d Ae

3 + 3e Ae
2 − 6 f Ao

2 + 2g Ao
1 + h Ae

1 + i,

rv(u, v) = 5b Ae
4 − 10aAo

4 + d Ao
3 − 4c Ae

3 − 3 f Ae
2 − 6e Ao

2 + h Ao
1 − 2g Ae

1 + j

where Ae
4 = u4 − 6u2 v2 + v4, Ao

4 = 2u3 v − 2uv3, Ao
3 = u3 − 3uv2, Ae

3 = 3u2 v − v3, Ae
2 = u2 − v2, Ao

2 = uv , Ao
1 = u, Ae

1 = v .
Hence, from F = 〈ru, rv〉, the term u8 in F is related with Ae

4, then we obtain a · b = 0 from F = 0. The term u7 v is
related with Ae

4 and Ao
4, then we get a2 = b2. Similarly, the other equations in (1) can be obtain from F = 0 and E = G .

It is noted that we obtain only two equations for the terms ui v j , i + j = k, k = 0,1,2, . . . ,7,8. One is for the case of i
is even, and the other one is for the case of i is odd. The equations derived from F = 0 are the same as the case of E = G
except for the equations i2 = j2 and i · j = 0. Hence, we can get 18 equations from the isothermal condition. �
4. Examples and properties

In this section, we will derive some kinds of minimal surface from the sufficient condition and study their properties.
It is difficult to find the general solution for the system (1). But some special solutions can be constructed from the

condition. In order to simplify the system (1), we firstly make some assumptions about the coefficient vectors,

a = (a1,a2,0), b = (−a2,a1,0), c = (c1, c2, c3), d = (d1,d2,d3), e = (e1, e2, e3),

f = ( f1, f2, f3), g = (g1, g2, g3), h = (h1,h2,h3), i = (i1, i2, i3), j = ( j1, j2, j3).

Supposing g = h = i = j = 0, c1 = c2 = d1 = d2 = e3 = f3 = 0, we obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

16c2
3 − d2

3 + 30a1e1 + 30a2e2 − 30a2 f1 + 30a1 f2 = 0,

4d3c3 − 15a2e1 + 15a1e2 − 15a1 f1 − 15a2 f2 = 0,

e2
1 + e2

2 − f 2
1 − f 2

2 = 0,

e1 f1 + e2 f2 = 0.

(2)

Let f1 = −e2, f2 = e1. Then the system (2) is changed into{
16c2

3 − d2
3 + 60a1e1 + 60a2e2 = 0,

2d3c3 − 15a2e1 + 15a1e2 = 0.

Hence,

c3 =
√

30

4

√√(
a2

1 + a2
2

)(
e2

1 + e2
2

) − (a1e1 + a2e2),

d3 = −√
30

√√(
a2

1 + a2
2

)(
e2

1 + e2
2

) + (a1e1 + a2e2).
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Fig. 1. Two examples of r1(u, v). Here u, v ∈ [−4,4].

Then we obtain a class of minimal surface with four shape parameters a1, a2, e1 and e2:

r(u, v) = (
X(u, v), Y (u, v), Z(u, v)

)
, (3)

where

X(u, v) = a1
(
u5 − 10u3 v2 + 5uv4) − a2

(
v5 − 10v3u2 + 5vu4) + e1u

(
u2 − 3v2) − e2 v

(
v2 − 3u2),

Y (u, v) = a2
(
u5 − 10u3 v2 + 5uv4) + a1

(
v5 − 10v3u2 + 5vu4) + e2u

(
u2 − 3v2) + e1 v

(
v2 − 3u2),

Z(u, v) =
√

30

4

√√(
a2

1 + a2
2

)(
e2

1 + e2
2

) − (a1e1 + a2e2)
(
u4 − 6u2 v2 + v4)

− √
30

√√(
a2

1 + a2
2

)(
e2

1 + e2
2

) + (a1e1 + a2e2)uv
(
u2 − v2).

When a2 = e2 = 0, r(u, v) in (3) is changed into

r1(u, v) = (
X1(u, v), Y1(u, v), Z1(u, v)

)
, (4)

where

X1(u, v) = a1
(
u5 − 10u3 v2 + 5uv4) + e1u

(
u2 − 3v2),

Y1(u, v) = a1
(

v5 − 10v3u2 + 5vu4) + e1 v
(

v2 − 3u2),
Z1(u, v) =

√
30

4

√√
a2

1e2
1 − a1e1

(
u4 − 6u2 v2 + v4) − √

30

√√
a2

1e2
1 + a1e1uv

(
u2 − v2).

When a1e1 > 0 or a1e1 < 0, r1(u, v) has two different forms. In the cases a1e1 > 0, the minimal surface r1(u, v) is
denoted by r1(u, v) = (X1(u, v), Y1(u, v), Z1(u, v)). The Gaussian curvature of r1(u, v) is

K1 = −60a1e1
(
u2 + v2)2

. (5)

Fig. 1a shows an example of r1(u, v) with a1 = e1 = 1.
When a1e1 < 0, we denote r1(u, v) by r1(u, v) = (X1(u, v), Y1(u, v), Z1(u, v)). Fig. 1b presents an example of r1(u, v)

with a1 = 1, e1 = −1.
Enneper surface has several interesting properties, such as symmetry, self-intersection on symmetric planes, and con-

taining straight lines. For r1(u, v) and r1(u, v), they have the similar properties.

Proposition 1. The minimal surface r1(u, v) is symmetric about the plane X = 0, the plane Y = 0, the plane X = Y and the plane
X = −Y .

Fig. 2a shows the minimal surface and its symmetric planes.

Proposition 2. r1(u, v) is a kind of minimal surface with self-intersections, and the self-intersection points are only on the symmetric
planes, i.e., there are no other self-intersection points on r1(u, v).

Proof. Suppose there is a self-intersection point p, which is not on the symmetric planes of r1(u, v). From the parametric
form of r1(u, v), we can find a plane L such that p is on L and L is the symmetric plane of r1(u, v). This is contrary to
Proposition 1. Hence, the self-intersection points are only on the symmetric planes. This completes the proof. �

Figs. 2b–2d illustrate the self-intersection curves on the minimal surfaces. The self-intersection curve has the same
symmetric plane as the minimal surface.
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Fig. 2. Symmetric planes and self-intersection curves: (a) r1(u, v) with a1 = 1 and e1 = −10, u, v ∈ [−4,4] and its symmetric planes; (b) r1(u, v) with
symmetric planes and self-intersection curves (red); (c) another view; (d) self-intersection curves. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. The minimal surface r1(u, v) and the straight lines on it: (a) r1(u, v) with a1 = 1 and e1 = 4, u, v ∈ [−4,4] and the two orthogonal straight lines;
(b) another view with plane Z = 0.

Proposition 3. The minimal surface r1(u, v) contains two orthogonal straight lines x = ±y on the plane Z = 0.

Proof. Supposing u = ±v in r1(u, v), we have X1(u, v) = ±Y1(u, v), Z1(u, v) = 0. Obviously, they are two orthogonal
straight lines x = ±y on the plane Z = 0. �

Fig. 3 shows the minimal surface and the straight lines on it. It is consistent with the fact that if a piece of a minimal
surface has a straight line segment on its boundary, then 180◦ rotation around this segment is the analytic continuation of
the surface across this edge.

When a1 = e1 = 0, we denote the minimal surface r(u, v) in (3) by r2(u, v). It has the similar properties with r1(u, v)

as presented in Propositions 1, 2 and 3.
In the case a2e2 < 0, the minimal surface r2(u, v) is denoted by r2(u, v) = (X2(u, v), Y2(u, v), Z2(u, v)). The Gaussian

curvature of r2(u, v) is

K2 = 60a2e2
(
u2 + v2)2

. (6)

Helicoid and catenoid are a pair of conjugate minimal surfaces. For r(u, v), we can find out a new pair of conjugate
minimal surfaces as follows.

Proposition 4. When a2 = −a1 , e2 = e1 , r1(u, v) and r2(u, v) are conjugate minimal surfaces.
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Fig. 4. Dynamic deformation between r1(u, v) and r2(u, v). Here u, v ∈ [−4,4].

Proof. After some computation, we have

∂ X1(u, v)

∂u
= 5a1

(
u4 − 6u2 v2 + v4) + 3e1

(
u2 − v2),

∂ X1(u, v)

∂v
= 20a1uv

(
u2 − v2) − 6e1uv,

∂ X2(u, v)

∂u
= −20a2uv

(
u2 − v2) + 6e2uv,

∂ X2(u, v)

∂v
= −5a2

(
u4 − 6u2 v2 + v4) + 3e2

(
u2 − v2).

When a2 = −a1, e2 = e1, ∂ X1(u,v)
∂u = ∂ X2(u,v)

∂v , ∂ X1(u,v)
∂v = − ∂ X2(u,v)

∂u . That is, X1(u, v) and X2(u, v) are harmonic conjugate.
Similarly, Y1(u, v) and Y2(u, v), Z1(u, v) and Z2(u, v) are also harmonic conjugate respectively. From Definition 5, the proof
is completed. �

From Lemma 2, when a2 = −a1, e2 = e1, the surfaces of one-parametric family

rt(u, v) = (cos t)r1(u, v) + (sin t)r2(u, v)

are minimal surfaces with the same first fundamental form. These minimal surfaces are isometric and have the same
Gaussian curvature at corresponding points. It is consistent with (5) and (6).

Let t ∈ [0,π/2]. When a2 = −a1 and e1 = e2, for t = 0, the minimal surface rt(u, v) reduces to r1(u, v); for t = π/2,
it reduces to r2(u, v). Then when t varies from 0 to π/2, r1(u, v) can be continuously deformed into r2(u, v), and each
intermediate surface is also minimal surface. Fig. 4 illustrates the isometric deformation when a1 = −a2 = 1, e1 = e2 = −10.
It is similar with the isometric deformation between helicoid and catenoid [14].

We can also derive some other new minimal surfaces from (1) (see Appendix A). They have four shape parameters, and
also have the similar properties with r(u, v).

5. Conclusion and future work

In this paper, quintic parametric polynomial minimal surface is studied. We firstly propose the sufficient condition of a
quintic harmonic polynomial parametric surface being a minimal surface. Then new minimal surfaces with several shape
parameters are obtained from this condition. We analyze the properties of the new minimal surfaces, such as symmetry,
self-intersection on symmetric planes and containing straights lines. In particular, we also construct two one-parameter
families of isometric minimal surfaces, and implement the isometric deformation between them.

As a part of our future work, we will study the parametric polynomial minimal surface of general degree and find a
unified parametric form, which can be used directly in CAD systems.
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Appendix A

A class of quintic minimal surface with four shape parameters a1, a2, i1 and i2:

R(u, v) = (
XR(u, v), Y R(u, v), Z R(u, v)

)
,

where

XR(u, v) = a1
(
u5 − 10u3 v2 + 5uv4) − a2

(
v5 − 10v3u2 + 5vu4) + i1u + i2 v,

Y R(u, v) = a2
(
u5 − 10u3 v2 + 5uv4) + a1

(
v5 − 10v3u2 + 5vu4) + i2u − i1 v,

Z R(u, v) =
√

10

3

√√(
a2

1 + a2
2

)(
i2
1 + i2

2

) − (a1i1 + a2i2)u
(
u2 − 3v2)

−
√

10

3

√√(
a2

1 + a2
2

)(
i2
1 + i2

2

) + (a1i1 + a2i2)v
(

v2 − 3u2).
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