"Aplicación de juegos didácticos en el aula" es uno de los proyectos de la Red Educativa Digital Descartes que están presentes en la misma desde su fundación. Como otros proyectos de Descartes, aplicación de juegos didácticos se inició en el INTEF (Ministerio de Educación) y ha seguido creciendo y ampliándose en Descartes. En la ampliación y difusión de este proyecto han participado varios compañeros a los que me gustaría citar expresamente: Enric Ripol, Santos Mondejar, Juan Carlos Collantes, Luis Ramírez, Joaquín Recio, Pepe Galo, Carlos Palacios, Antonio Vázquez, Paco Ruiz, José Luis San Emeterio, David Benito, Enrique Pescador, Luisa Muiño, Trino Grau, Ángel Velasco, Miguel Ángel Garcés y María Hijano.
En este proyecto se propone la inclusión de juegos didácticos en el aula, basados en escenas de Descartes, como herramienta dinamizadora, motivadora, de cambio metodológico, interdisciplinar, transversal, integradora, personalizable y fácil de utilizar.
Los contenidos de este proyecto se estructuran en base a los siguientes elementos: web, blog, DVD y canal de YouTube. La web es el sitio principal del proyecto, en ella se encuentran clasificados todos los juegos y materiales relacionados (ficheros de contenidos, cursos, tutoriales, enlaces, etc). En el blog se presentan experiencias de utilización práctica de juegos, ideas y orientaciones sobre el funcionamiento de los juegos, noticias y materiales relacionados con el proyecto, etc. El DVD, descargable desde el apartado de descargas de la web del proyecto, contiene los juegos y materiales del proyecto para su uso off-line. El canal de YouTube incluyen todos los vídeos y tutoreiales reazionados con el mismo.
A partir de ahora y mensualmente se realizará una publicación mensual en el Blog de Descartes sobre el proyecto de juegos didácticos. Agradeceré cualquier contribución, aportación, comentario o intervención que se realice al respecto. Finalmente incluyo el último vídeo de presentación realizado sobre los juegos de este proyecto.
La ong "Red Educativa Digital Descartes" (RED Descartes) acaba publicar el segundo volumen de su publicación periódica
Recursos educativos interactivos de RED Descartes
ISSN: 2444-9180 Dep. Legal: CO-2079-2015
Este volumen consta de tres números y recogen todos los materiales que se han desarrollado o actualizado a lo largo del año 2016. Los contenidos de cada número son los siguientes:
Estos DVD pueden descargarse desde nuestro espacio web.
Todas y todos los socios de RED Descartes están de enhorabuena por la publicación de este nuevo volumen, el cual ayudará a la difusión de todo el trabajo altruista que realizan en pro de la Educación en la aldea global, gracias a las TIC.
El Grupo Empresarial IC S.L., prestigiosa Institución Comercial especializada en la ejecución integral de grandes proyectos de interior que abarcan la construcción, las instalaciones, el mobiliario y el mantenimiento, muestra, además, su interés por el mundo de la Educación y la difusión del conocimiento, como base de cualquier actividad humana, y por ello ha patrocinado cincuenta recursos educativos interactivos generados con Descartes JS, que son funcionales en cualquier tipo de dispositivo (ordenador, tableta o smartphone), englobados en tres apartados o bloques:
Grupo IC trabaja en exclusiva para grandes marcas de los sectores retail, hoteles, lujo, sanitario, oficinas y restauración, siendo cuatro las empresas que conforman el grupo:
Aunque Grupo IC construye grandes proyectos de interior para importantes y conocidas empresas en cualquier lugar del mundo, es posible que sea Primark Gran Vía Madrid el más conocido, pues con sus 12.300 metros cuadrados de superficie de ventas es la mayor tienda que esta firma posee en España.
Durante los días 30 de Septiembre y 1 de Octubre se celebró en la Facultad de Matemáticas de la Universidad de Santiago de Compostela el VIII Congreso de AGAPEMA (Asociación Galega de Profesores de Educación Matemática), con más de 35 ponencias (comunicaciones y talleres) a las que asistieron más de 200 profesores de las etapas de Educación Infantil, Primaria y Secundaria.
La Red Educativa Digital Descartes estuvo representada por Emilio Pazo Núñez y Xosé Eixo Branco, que dirigieron el Obradoiro (Taller) titulado: “Aulas con Proyectodescartes.org” y expusieron durante una hora y media un resumen de los subproyectos enmarcados en el Proyecto Descartes, así como su trabajo y experiencia en la incorporación de los materiales digitales y los cuadernos de trabajo del subproyecto ED@D a sus Aulas Virtuales Moodle.

La exposición y el trabajo que fueron desarrollando los asistentes al Obradoiro, consistió, en primer lugar, en un recorrido por unidades didácticas digitales y objetos interactivos de los subproyectos incluidos en nuestra página web: Telesecundaria, Aprende México, Plantillas, Ingeniería y Tecnología, UN-100, Icartesilibri, COMPETENCIAS, ASIPISA, CANALS, PI, ED@D, Unidades didácticas, Misceláneas, Problemas, Juegos didácticos,… Los asistentes pudieron entrar en algunas de las unidades propuestas a modo de ejemplo e interactuar con ellas, con especial hincapié en el proyecto ED@D, que ambos ponentes utilizan diariamente en sus clases en Educación Secundaria. En una segunda parte del taller se mostraron las características de las aulas Moodle en la nueva versión instalada en los servidores de la Consellería de Educación de la Xunta de Galicia, así como modelos de aula virtual Moodle, que ya se están usando, a la que se han incorporado mediante enlaces o mediante paquetes SCORM, diversas actividades para seguir de este modo los materiales digitales del mencionado Proyecto ED@D e incluso los propios cuadernos de trabajo que, de este modo, se usan de manera digital.
Este mes vamos a ver la unidad de 4ºESO Académicas correspondiente a "Potencias y radicales":
En el vídeo hemos tratado los puntos siguientes:
1.Radicales
Definición. Exponente fraccionario
Radicales equivalentes
Introducir y extraer factores
Cálculo de raíces
Reducir a índice común
Radicales semejantes
2.Propiedades
Raíz de un producto
Raíz de un cociente
Raíz de una potencia
Raíz de una raíz
3.Simplificación
Racionalización
Simplificar un radical
4.Operaciones
Suma y resta
Multiplicación de radicales
División de radicales
Hay una tendencia a tratar de asociar o encontrar en todo aquello que es bello la proporción áurea o divina, o a construir objetos a partir de esta razón porque se presuponen serán apreciados como bellos por el simple hecho de seguir dicha pauta. Esto, como no, también ha acontecido con la modelación matemática de la concha del Nautilus pompilius sobre la que suele afirmarse que su forma y crecimiento es áureo. Sin embargo, en este artículo se muestra y se analiza en detalle cómo dicha concha lo que realmente sigue es un patrón ubicado en la denominada proporción cordobesa o humana. Con apoyo en un recurso interactivo desarrollado con la herramienta Descartes se motiva el análisis y comportamiento y se procede a partir de la yocto-yotta realidad observada a construir el modelo matemático, el cual se detalla ampliamente.
Pulsando sobre la siguiente imagen se accede a dicho recurso interactivo que se aborda o plantea en seis fases:
|
|
En cada fase se dispone de un botón de información que, al pulsarlo, da acceso a un detalle de las propiedades que pueden inducirse a partir de la interacción con la escena. |
![]() |
| Y en el botón de indicaciones se aborda una introducción, los objetivos, las instrucciones de uso en cada fase y finalmente se enlaza un artículo donde se detalla el análisis matemático realizado. Este artículo está embebido a continuación o bien puede abrirse y/o descargarse desde este enlace. |
En las conclusiones del artículo anterior afirmamos:
A través del detallado y progresivo análisis realizado hemos ido construyendo la base teórica o modelo matemático que soporta a la bella morfología del Nautilus Pompilius y hemos tratado del encontrar el modelo de crecimiento que conduce a poder explicar y a comprender por qué adquiere esa forma. Desde su inicio la espiral logarítmica cordobesa tomó presencia y a medida que la mirada se deslizaba hacia algún nuevo detalle esta espiral ha vuelto a imponer su presencia marcándonos y alumbrándonos el camino del descubrimiento y de la adquisición del conocimiento. La belleza del Nautilus pompilius se sustenta en la proporción cordobesa o humana y todo punto de su concha o del interior ha quedado determinado por la intersección de dos espirales cordobesas. El germen o base inicial matemática que explica el por qué acontece todo lo observado, se ha ubicado en el crecimiento gnomónico de un triángulo cordobés, las propiedades de éste se trasladan al desarrollo y comportamiento global detectado y modelado.
Deseamos que nuestro trabajo de investigación satisfaga tu curiosidad y te animamos a interactuar con nosotros bien realizando algún comentario en este blog (los comentarios no se publicarán directamente sino que pasan por una moderación previa a su publicación) o bien escribe al correo de nuestra RED Descartes: Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo..
Excelente contribución a la educación global. Felicitaciones a los organizadores…
Escrito por Ageleo Justiniano Tucto
en %PM, %20 %503 %2023 %13:%Oct
Participantes de tres continentes en el curso para el diseño de libros interactivos
(Difusión)
Estimado Javier Arturo: Agradecemos su reconocimiento al programa de Educación…
Escrito por José Antonio Salgueiro González
en %PM, %22 %458 %2023 %12:%Sep
Abierto el plazo de inscripción en la V Edición del Curso para el Diseño de Libros Interactivos
(Difusión)
Me parece una gran iniciativa en favor de la educación,…
Escrito por JAVIER ARTURO MARTINEZ FARFAN
en %AM, %22 %189 %2023 %05:%Sep
Abierto el plazo de inscripción en la V Edición del Curso para el Diseño de Libros Interactivos
(Difusión)
Ildefonso era un hombre de edad y motivaciones educativas similares…
Escrito por José Luis San Emeterio
en %PM, %05 %805 %2023 %20:%Ago
Ildefonso Fernández Trujillo, in memoriam
(Difusión)
Yo conocí la fórmula más bella de las matematicas como…
Escrito por Pepin
en %PM, %17 %576 %2023 %14:%Jul
Cálculo diferencial e integral, módulo I
(iCartesiLibri Matemáticas)