La semana pasada en Radio Descartes, en el espacio “¿Quién es el personaje misterioso?” entrevistamos al que se considera; primer algebrista de Europa (cronológicamente hablando) y como el introductor del sistema numérico árabe.
Resumiendo lo que nos dijo en su entrevista:
Hoy, trascurrida una semana, corresponde desvelar su identidad, como sigue siendo habitual, a través un puzle realizado con DescartseJS. La imagen del puzle tipo jigsaw (piezas irregulares), es una composición donde aparece la efigie de nuestro personaje y de fondo diferentes manifestaciones del número Phi y de su famosa sucesión asociada.
Las 16 piezas barajadas, obtenidas al cortar la imagen, se sitúan amontonadas a la derecha de la escena. Para descubrir a nuestro personaje misterioso hay que montar estas piezas sobre una cuadrícula 4x4 a la izquierda de la escena arrastrándolas con clic mantenido y soltándolas sobre el cuadro donde quedan encajadas. Si la pieza se sitúa correctamente ya no es posible arrancarla de su cuadro. Si se montan dos piezas sobre un mismo cuadro, éste, quedará resaltado con color rojo advirtiendo de esta situación.
Inicialmente, a modo de ayuda, se puede ver detrás de la cuadrícula la composición poco contratada y con tonalidades grises. Un control de tipo botón permite ocultarla y así se sugiere para que el montaje del puzle suponga un mayor reto.
Cuando el puzle se completa aparece a la derecha el nombre del personaje, su caricatura en color, se escucha un brevísimo fragmento de una pieza musical italiana de la Edad Media y se puede ver un estupendo vídeo relacionado que se emitió, hace algún tiempo, en el programa de televisión Más por Menos.
La siguiente imagen lleva un enlace al puzle que se abrirá en una nueva ventana.
El autor de este artículo, la edición de las imágenes y la programación del puzle es Ángel Cabezudo Bueno y tiene licencia CC BY-NC-SA 4.0
El puzle de arrastre básico, tipo jigsaw, tiene su origen en una documentación aportada por Juan Guillermo Rivera Berrío.
Gracias por la atención que ha recibido este octavo personaje matemático y no os perdáis el siguiente.
"Todo lo que consigue la Tribu 2.0 es de cine", así que, desde RED Descartes, queremos felicitar a todos los compañeros y compañeras, centros educativos, empresas, organismos e instituciones y medios de comunicación que, gracias al #sumarsinergias, las TIC y el trabajo en colaboración, han desarrollado con éxito, en el marco de la Escuela del s. XXI, el fabuloso proyecto European Robotics Week 2013/14 Education.
En este artículo recordamos las aportaciones de RED Descartes y mostramos la aplicación didáctica del famoso juego 50x15 en su versión HTML5 para tablet y smartphone, con una batería de preguntas proporcionada por Francisco Javier Martínez Guardiola, licenciado en Física, ingeniero en Electrónica y diploma de Estudios Avanzados en Tecnologías Industriales. Mientras que el juego ha sido creado y diseñado en DescartesJS por Jesús Muñoz, colaborando en la resolución de dificultades técnicas Joel Espinosa y José Galo, todos miembros de la RED Descartes, con la inestimable ayuda de Santos Mondéjar.
Podéis acceder al juego desde el enlace o la imagen, incluyendo posteriormente el nombre del jugador y pulsando el botón comenzar. El resto es completamente intuitivo y no presenta ninguna dificultad. ¿Te atreves a superar el reto?
Todos los detalles en el blog del proyecto European Robotics Week 2013/14 Education.
Este mes vamos a ver la unidad correspondiente a Potencias y raíces de enteros. Esta unidad es muy corta porque es un repaso de los visto en 1º de la ESO:
Como hemos dicho es muy corta porque repasa los conceptos del curso anterior:
1.Potencias de un número entero
¿Qué es una potencia?
Signo de una potencia
2.Operaciones con potencias
Potencia de productos y cocientes
Producto y cociente de potencias
Potencia de una potencia
3.Potencias de base 10. Notación científica
Potencias de base 10
Notación científica
4.Cuadrados perfectos. Raíces cuadradas
Cuadrados perfectos
Raíces cuadradas
Acceso a la miscelánea: Extremos de funciones de dos variables. Método del Hessiano.
En esta escena se muestra cómo realizar el estudio de los extremos relativos de una función diferenciable de dos variables.
Introducida la expresión de una función diferenciable y de sus derivadas parciales primeras, se puede analizar en primer lugar, qué puntos tienen el plano tangente horizontal (condición necesaria para que un punto sea extremo). Posteriormente, el método del hessiano permitirá determinar cuáles de esos puntos son máximos o mínimos relativos.
Este método se justifica utlilizando el polinomio de Taylor de la función de grado 2 centrado en el punto en el que se está realizando el análisis.
El vídeo siguiente explica el funcionamiento de esta escena.
Acceso a la miscelánea: Extremos de funciones de dos variables. Método del Hessiano.
Publicamos hoy el sexto artículo dedicado a compartir y difundir algunas propuestas didácticas para el desarrollo de la comunicación audiovisual en nuestro alumnado a través de las Matemáticas con Descartes, fomentando su creatividad e imaginación y las técnicas necesarias del lenguaje cinematográfico y audiovisual, a la vez que proporcionarles una formación básica que les permita, de forma autónoma, generar y producir sus propios contenidos audiovisuales. Así, el equipo de esta producción ha elegido un escenario completamente diferente a los anteriores, con público incluido.
Recordamos y enlazamos a las publicaciones relacionadas con este proyecto: Desarrollo de la comunicación audiovisual a través de las Matemáticas con Descartes, Comunicación audiovisual con iCartesiLibri,Resolución de problemas y comunicación audiovisual y mutimedia con Descartes, ¡Diviértete! aprendiendo con Descartes y El ángulo de depresión y la comunicación audiovisual con Descartes.
Esta producción audiovisual está inspirada en la página "Giros", una unidad liberada de PISA integrada en la sección Miscelánea del Proyecto Descartes.
Y para finalizar este año 2014 tenemos a nuestro personaje misterioso (VIII). Cerramos el año, aunque no los programas con nuestros personajes históricos que cada día nos enseñan más y más. En esta ocasión, nuestro personaje nos acompaña desde la antigua Italia. Aunque como descubriremos en la entrevista nuestro personaje viajó por muchas ciudades comerciando y aprendiendo de todas las culturas. Pero no sólo aprendió sino que quiso enseñar a los demás todos sus descubrimientos, escribiendo un libro que poco a poco se fue extendiendo por todo occidente.
Escucha atentamente el podcast que puedes ver más abajo y dejanos tu comentario sobre quién crees que es este misterioso personaje. La semana que viene publicaremos su identidad a través de un puzle.
En la interpretación de nuestro personaje misterioso tenemos a nuestro compañero: José Mª Sorando, al que todos conocéis por su estupenda página web "Matemáticas en tu mundo"
El guión es obra de Eva M Perdiguero profesora de matemáticas y socia colaboradora de Red Educativa Digital Descartes. El trabajo lleva licencia CC BY-NC-SA 4.0. La entrevistadora y realizadora del podcast, también es Eva M Perdiguero.
Tanto los efectos especiales como la imagen del comienzo del artículo, pertenecen al Banco de sonidos del INTEF-MECD-ESPAÑA, tienen licencia CC BY-NC-SA 3.0 y han sido adaptados para esta ocasión.
Excelente contribución a la educación global. Felicitaciones a los organizadores…
Escrito por Ageleo Justiniano Tucto
en %PM, %20 %503 %2023 %13:%Oct
Participantes de tres continentes en el curso para el diseño de libros interactivos
(Difusión)
Estimado Javier Arturo: Agradecemos su reconocimiento al programa de Educación…
Escrito por José Antonio Salgueiro González
en %PM, %22 %458 %2023 %12:%Sep
Abierto el plazo de inscripción en la V Edición del Curso para el Diseño de Libros Interactivos
(Difusión)
Me parece una gran iniciativa en favor de la educación,…
Escrito por JAVIER ARTURO MARTINEZ FARFAN
en %AM, %22 %189 %2023 %05:%Sep
Abierto el plazo de inscripción en la V Edición del Curso para el Diseño de Libros Interactivos
(Difusión)
Ildefonso era un hombre de edad y motivaciones educativas similares…
Escrito por José Luis San Emeterio
en %PM, %05 %805 %2023 %20:%Ago
Ildefonso Fernández Trujillo, in memoriam
(Difusión)
Yo conocí la fórmula más bella de las matematicas como…
Escrito por Pepin
en %PM, %17 %576 %2023 %14:%Jul
Cálculo diferencial e integral, módulo I
(iCartesiLibri Matemáticas)