Dentro del Proyecto Competencias de la RED encontramos una serie de materiales que forman el grupo PISA 2017. Estas unidades se basan en los objetos liberados PISA 2015 y han sido desarrolladas con la herramienta Descartes.
Por su diseño y construcción añaden interactividad, aleatoriedad y posibilidad de corrección automática con el fin de facilitar el autoaprendizaje y la formación en competencias.
Estas unidades están agrupadas en cinco categorías: ciencias, comprensión lectora, finanzas, matemáticas y resolución de problemas.
Una vez realizadas todas las actividades de una unidad cualquiera, se puede optar por la revisión y modificación de las respuestas o seguir para su corrección. Se presentan cuatro opciones de corrección, la corrección directamente de la actividad, descargar las respuestas, imprimir o enviar por correo electrónico.
La descomposición de un cubo en pirámides de base triangular surge de manera natural, y fácil, una vez que se han analizado las particiones de un cubo en pirámides de base cuadrada. Basta considerar una de las dos diagonales de dicha base cuadrada para que la pirámide quede partida en dos triangulares. Así pues, toda pirámide cuadrada puede subdividirse de dos formas diferentes en pirámides triangulares, sendas pirámides para sendas diagonales. No obstante, veremos que este procedimiento no conduce a la partición de cardinal mínimo, siendo necesario abordar un planteamiento constructivo independiente para lograrla. Este nuevo esquema nos conducirá a particiones que catalogaremos como no prismáticas o primásticas. Estas últimas serán objeto de un análisis específico en un tercer artículo relativo a este tema.
Particiones de un cubo en pirámides de base triangular
1. Partición mediante descomposición de pirámides de base cuadrada
Si consideramos las diferentes particiones del cubo en pirámides cuadradas obtenidas en el artículo anterior entonces, automáticamente, son conocidas sendas particiones en pirámides triangulares sin más que considerar cada una de las dos diagonales del cuadrado que constituye la base en cada pirámide. Además, las dos subpirámides obtenidas serán equivalentes (con igual volumen), pues la base inicial cuadrada ha quedado dividida en dos partes iguales y la altura es común a ambas y, por tanto, el volumen de cada una de esas pirámides triangulares es la mitad del volumen inicial. En este contexto tendríamos las siguientes situaciones:
Escena 1. Partición prismática del cubo en seis pirámides triangulares congruentes
(Haz clic en la imagen para acceder al recurso interactivo)
Este proceso de división podría repetirse considerando la mediana de las nuevas bases y así obtendríamos una partición con doce pirámides equivalentes y dos familias de 6 pirámides congruentes entres sí; y con una nueva fracción por la mediana serían 24 pirámides equivalentes y 4 familias congruentes y, en general 3·2n pirámides equivalentes y 2n-1 familias de pirámides congruentes entre sí. Un entretenimiento teórico bonito, pero que físicamente su traslación a un contexto manipulativo rápidamente no es viable.
Escena 2. Partición no prismática del cubo en seis pirámides triangulares equivalentes
En la siguiente escena se aborda de manera general la partición del cubo en pirámides triangulares a partir de las particiones del mismo en pirámides cuadradas:
Escena 3. Partición del cubo en pirámides triangulares por división de pirámides cuadradas. Caso general.
Todas las situaciones anteriores son, o pueden considerarse, interesantes y conducentes a puzles de cierta dificultad tanto en los casos en los que se busca la máxima congruencia o regularidad, como en la posición contraria. Pero ninguna de ellas conduce a la partición con cardinal mínimo, pues el planteamiento realizado viene condicionado por la partición previa en pirámides de base cuadrada. La partición mínima, como veremos en la próxima sección, se corresponde con cinco pirámides y salvo isometrías hay una única posibilidad para su construcción. Por ello, nuestro centro de interés se focalizará en la antes citada descomposición prismática del cubo en seis pirámides triangulares equivalentes, que sin ser el caso único de cardinal mínimo sí que genera una variedad de situaciones que nos proponemos cuantificar y detallar.
2. Partición mediante construcción específica
En esta sección partiendo de un cubo de vértices {A, B, C, D, E, F, G, H}, nos planteamos realizar una partición del mismo en pirámides triangulares buscando, por un lado, que la descomposición tenga cardinal mínimo y, por otro, buscando alternativas en las que sin ser de cardinal minimo se encuentren congruencias o equivalencias.
Dado que las pirámides triangulares son poliedros convexos con cuatro caras triangulares (es decir tetraedros) y cuatro vértices, en la planificación de esta partición han de tenerse en consideración las siguientes observaciones:
Escena 4. Una posible elección de los elementos primarios para realizar la partición
Escena 5. Pirámide triangular determinada por dos segmentos con distinta dirección no coplanarios
Escena 6. División del cubo en cinco prismas triangulares
Escena 7. Diagonales coplanarias
Escena 8. División del cubo en dos prismas triangulares
Así pues, nuestro análisis nos conduce a plantearnos la partición del cubo a través de la descomposición de un prisma triangular en pirámides triangulares. Éste puede ser un buen tema para detallar en un próximo artículo, y ello es mi propósito, confiando en que habrá colegas interesados en seguir comprobando como algo que parece tan simple, la descomposición de un cubo, no lo es tanto y aporta mucho juego, interés, conocimiento y belleza matemática. Por aquí ¡os espero pronto!
Este mes vamos a ver la unidad de "Sistemas de ecuaciones" de 4ºESO Aplicadas:
De forma muy breve hemos tratado los siguientes temas:
1.Sistemas de ecuaciones lineales
Ecuación lineal con dos incógnitas
Sistemas de ecuaciones lineales
Clasificación de sistemas
2.Métodos de resolución
Reducción
Sustitución
Igualación
3.Aplicaciones prácticas
Resolución de problemas
4.Sistemas de inecuaciones con una
incógnita
Resolución
El subproyecto Misceláneas está de enhorabuena, que se recuerde, pocas veces, en tan poco tiempo, un grupo tan reducido de personas ha aportado tanta cantidad de objetos de tan elevada calidad y tan alto potencial educativo a cualquiera de los subproyectos de la Red Descartes. Y no es la intención desmerecer al resto, muy al contrario; si no la de dar merecida notificación de un hito tan memorable. La excepcionalidad se justifica a si misma nada más visualizar cualesquiera de las últimas escenas incorporadas al subproyecto, lo que ya ha sido posible gracias a las reseñas que tanto José R. Galo Sánchez como Ángel Cabezudo Bueno han expuesto recientemente en el apartado Últimos materiales del blog y al artículo que el primero de ellos acaba de publicar, también en este blog, donde justifica el proceso de creación, creando a su vez nuevas escenas relacionadas con el tema de proporcionar una ayuda inestimable a la capacidad de visualización de las transformaciones dinámicas en el espacio tridimensional. Por otro lado la buena salud del subproyecto también se debe a la infatigable tarea de adaptación de materiales obsoletos, al nuevo editor DescartesJS, de las profesoras Elena E. Álvarez Sáiz y María José García Cebrian, los profesores ya mencionados y otros/as que aunque no se indican están en la mente de todos los usuarios del portal. Relativo a las aportaciones más recientes caben destacar:
De las que destacamos:

Matemáticas, joyería y mezclas.
En esta ocasión, en la sección de vídeo, hemos elegido uno que muestra una presentación de los cuerpos platónicos diferente a lo habitual.
Ildefonso Fernández Trujillo. 2018
Excelente contribución a la educación global. Felicitaciones a los organizadores…
Escrito por Ageleo Justiniano Tucto
en %PM, %20 %503 %2023 %13:%Oct
Participantes de tres continentes en el curso para el diseño de libros interactivos
(Difusión)
Estimado Javier Arturo: Agradecemos su reconocimiento al programa de Educación…
Escrito por José Antonio Salgueiro González
en %PM, %22 %458 %2023 %12:%Sep
Abierto el plazo de inscripción en la V Edición del Curso para el Diseño de Libros Interactivos
(Difusión)
Me parece una gran iniciativa en favor de la educación,…
Escrito por JAVIER ARTURO MARTINEZ FARFAN
en %AM, %22 %189 %2023 %05:%Sep
Abierto el plazo de inscripción en la V Edición del Curso para el Diseño de Libros Interactivos
(Difusión)
Ildefonso era un hombre de edad y motivaciones educativas similares…
Escrito por José Luis San Emeterio
en %PM, %05 %805 %2023 %20:%Ago
Ildefonso Fernández Trujillo, in memoriam
(Difusión)
Yo conocí la fórmula más bella de las matematicas como…
Escrito por Pepin
en %PM, %17 %576 %2023 %14:%Jul
Cálculo diferencial e integral, módulo I
(iCartesiLibri Matemáticas)