En este juego los más peques podrán vestir a su muñeca. De entre todas las prendas de que dispone tendrá que elegir la que le pida el juego. Además, las prendas no podrán sobrepasar un precio asignado. Jugando, jugando nuestros pequeños harán sumas muy sencillas.
El juego se llama: El armario de la muñeca. Y forma parte del proyecto Canals.
Si quieres ver cómo se juega y donde encontrar el juego, en el vídeo siguiente te lo muestra.
Para jugar on-line, descargarte el juego y jugar en local o conseguir el código que te permite insertar el juego en tu blog o web, sigue la siguiente dirección:
https://proyectodescartes.org/descartescms/index.php/component/k2/item/210-el-armario-de-la-muneca
Si quieres ver la presentación que aparece en el vídeo haz clic en la siguiente imagen.
Den
tro del Proyecto Compencias vamos a fijarnos en esta ocasión en un objeto de aprendizaje que evalúa la competencia de Conocimiento e interacción con el medio: Apta para beber
Se trata de comprobar si los alumnos han entendido el proceso de potablización del agua.
Contiene 5 cuestiones, 4 de seleccionar la opción correcta y otra con tres preguntas de "sí o no"
Encontramos una imagen para centrar a los alumnos en el tema, la corrección automática que indíca la respuesta correcta en caso de error, el marcador con los aciertos/errores y una pestaña que nos da información sobre lo que evalúa cada cuestión.
Aquí tenéis un vídeo con el funcionamiento:
Lo mejor es que lo probéis por vosotros mismos, enlace
Recordad que hay muchos más objetos de aprendizaje en el Proyecto Competencias
Por Ángel Cabezudo Bueno - 25 de agosto de 2014
Eva María Perdiguero Garzo es Licenciada en Matemáticas en la especialidad de Computación, profesora del IES Ribera del Bullaque en Porzuna (Ciudad Real – España), tiene mucha experiencia en el uso de las TIC, particularmente en el aula de matemáticas; utiliza habitualmente en sus clases escenas de Descartes y nos dice que es fácil encontrar entre éstas algún material útil para el trabajo autónomo de sus alumnos o como refuerzo de sus explicaciones.
Pero el motivo principal de entrevistar en Radio Descartes a Eva María es para que nos hable de su vinculación con RED Descartes y de la actividad que desarrolla con nosotros como coordinadora de este blog que ella misma puso en marcha desde un principio. Con sus respuestas vamos descubriendo paso a paso la razón de ser del blog, sus características principales y los retos que tiene que afrontar en el día a día.
La entrevista minuto a minuto:
Artículo relacionado: ¿Cómo utilizo Descartes en mi aula? Eva María Perdiguero Garzo. Por José Antonio Salgueiro (16-09-2013)
Fruto de la colaboración en el MOOC - taller de 'Presentadores de diapositivas HTML 5', desarrollado y dirigido por Juan Guillermo Rivera, con la colaboración de Eva M. Perdiguero Garzo, es el trabajo que puede verse haciendo clic en la imagen siguiente.
En la presentación anterior, haciendo clic en cada diapositiva, se enlaza con un subproyecto, o una utilidad, diferente de la Red Descartes, y en alguna de las diapositivas, son varios los enlaces a diferentes apartados del proyecto, o se ofrece la oportunidad de navegar directamente por el contenido de algún apartado.
Además se incluye un vídeo donde se explica como acceder, por ejemplo, a una miscelánea, y se detalla como utilizar estos materiales.
También se incluyen puzles de arrastre, giratorios y circulares, que en esta ocasión son de monumentos, animales, plantas, etc. etc. etc. y que en si mismos son un buen entrenamiento para la memoria visual y diversas habilidades mentales pero se está evaluando la posibilidad de usar los puzles como una manera lúdica de afianzar conceptos geométricos, o en general, de reforzar y afianzar conceptos.
En este otro enlace puede descargarse la presentación, desde GoogleDrive, para su uso fuera de línea.
A continuación se ofrecen enlaces a diferentes presentaciones, todas ellas realizadas en el taller de HTML5.
En esta primera presentación debemos manejar las diapositivas mediante las flechas del teclado. Se incluyen 18 puzles, nueve de arrastre y nueve giratorios además de la información expuesta anteriormente.
La presentación puede descargarse aquí.
El enlace siguiente nos lleva al trabajo realizado por el profesor Ángel Cabezudo Bueno, presentación que también debe manejarse con las flechas del teclado. La presentación titulada 'El Proyecto UN_100' describe las características de este proyecto y a continuación introduce y detalla el uso de la unidad: 'El disco de Poincaré'
En esta otra presentación, que también debe manejarse con las flechas del teclado, el profesor Juan Guillermo Rivera Berrío, como creador y director del taller, muestra algunos de los puzles realizados por los participantes en el MOOC y, mediante un vídeo, enseña paso a paso, como realizar puzles con la herramienta DescartesJS y el programa de dibujo Gimp.
En esta otra presentación se muestran materiales sobre las progresiones aritméticas y geométricas listos para usar en la propia presentación.
Como cierre les ofrezco la presentación que sobre el lugar donde resido he realizado. Espero que les guste.
Ildefonso Fernández Trujillo. Agosto 2014
Publicamos hoy el tercer artículo dedicado a compartir y difundir algunas propuestas didácticas para el desarrollo de la comunicación audiovisual en nuestro alumnado a través de las Matemáticas con Descartes, que bien podríamos denominar en este caso "el valor añadido de la elegancia en la resolución de problemas", donde podemos observar, si cotejamos con las anteriores, la peculiaridad, creatividad e imaginación de cada equipo para afrontar retos incontrolados: Desarrollo de la comunicación audiovisual a través de las Matemáticas con Descartes y Comunicación audiovisual con iCartesiLibri.
En esta ocasión abordamos las aplicaciones de la Trigonometría para la resolución de problemas de la vida cotidiana y de la Topografía clásica, habiendo usado un dispositivo móvil tipo tableta para la grabación del vídeo. Sus autores y protagonistas nos contarán los obstáculos encontrados y la forma de solventarlos.
Se presenta la miscelánea: Resto de Lagrange
Esta escena analiza el resto de la aproximación de una función derivable n veces en un punto a por su polinomio de Taylor de grado n a partir de la expresión del resto debida a Lagrange.
Esta expresión es una generalización del teorema del valor medio del cálculo diferencial y permite, en algunos casos, acotar el error de la aproximación de una función por su polinomio de Taylor.
Para la utilización de esta miscelánenea se debe introducir la expresión de la función, su derivada de orden n y los puntos a y x que se corresponden, respectivamente, con el punto en el que se hace el desarrollo y el punto en el que se quiere estudiar la aproximación. A partir de estos datos se puede calcular el polinomio de Taylor de cualquier grado centrado en el punto a siempre que la función sea suficientemente derivable en un dicho punto.
El vídeo siguiente explica el funcionamiento de esta escena.
Acceso a la miscelánea: Resto de Lagrange
Excelente contribución a la educación global. Felicitaciones a los organizadores…
Escrito por Ageleo Justiniano Tucto
en %PM, %20 %503 %2023 %13:%Oct
Participantes de tres continentes en el curso para el diseño de libros interactivos
(Difusión)
Estimado Javier Arturo: Agradecemos su reconocimiento al programa de Educación…
Escrito por José Antonio Salgueiro González
en %PM, %22 %458 %2023 %12:%Sep
Abierto el plazo de inscripción en la V Edición del Curso para el Diseño de Libros Interactivos
(Difusión)
Me parece una gran iniciativa en favor de la educación,…
Escrito por JAVIER ARTURO MARTINEZ FARFAN
en %AM, %22 %189 %2023 %05:%Sep
Abierto el plazo de inscripción en la V Edición del Curso para el Diseño de Libros Interactivos
(Difusión)
Ildefonso era un hombre de edad y motivaciones educativas similares…
Escrito por José Luis San Emeterio
en %PM, %05 %805 %2023 %20:%Ago
Ildefonso Fernández Trujillo, in memoriam
(Difusión)
Yo conocí la fórmula más bella de las matematicas como…
Escrito por Pepin
en %PM, %17 %576 %2023 %14:%Jul
Cálculo diferencial e integral, módulo I
(iCartesiLibri Matemáticas)